Sensors for Future Combat Systems (FCS)

NDIA 12 March 2002

Sensing Platforms/Sensors for FCS

• Enablers

- NetFires LAM
- A-160
- OAV
- FOPEN radar
- DRaFT
- **ESA**
- Ladar
- Uncooled IR

• Gaps

- Fusion and decision-aiding
 - Commander's interactive display
 - Processing on sensor-platform
- Bistatic radar designs
- Acoustics
 - Dismounted warrior array
 - Anti-personnel IUGS
- IUG positioning and comms
- Collaborative targeting
 - FCV commander's associate
 - Robotic weapon carrier
 - Follower
 - Scout

Functions of FCS Sensors

Survivability

- Blue SA (track locus, ID)
 - **Active Protection (AP)**
 - Preempt hostile action
 - Locate and destroy attacker
 - Fail attack
- Engage BLOS
- COMSEC

Lethality

- Target tracking, IFF
- Collaborative engagement
 - Geo-registration
 - Optimized weapon choices
- Low-latency strike
- Post strike assessment

Mobility

- DTED on demand
- Air/ground routing and deconfliction
- Robust networking

Sustainability

- TAV
- JIT re-supply

An Unexpected LOS Engagement

- Despite all our Organic Aerial Vehicles, and all our other overhead sensors, we must be ready for close combat.
- In the view of the FCS SAG, our CONOPS should include (1) **preemption**, (2) **networking** the location of enemy targets, and (3) their prompt **destruction**.
- If the US develops the appropriate mix of sensors, processors, wireless communications, and weapons, the whole will have a fourth effect: **deterrence**.
- N.B., this is an example of the "quality of Firsts" stressed by TRADOC: <u>latencies beyond</u> micro-seconds will be fatal.

Collaborative Engagement

A Possible Precursor for FCS C4ISR

Leveraging Human Performance

Rotorcraft Pilot's Associate

RPA Results

Increase in Loss exchange ratio - 96% Reduction in losses - 78% Increase in targets destroyed - 42%

Decrease in exposure to threat - 21%

Reduction in mission planning - 32%

Sample Functionality

- Plan Flyable Route for Ownship
- Plan Flyable Routes for Team
- Determine Threat LOS
- Assign Targets to Team based on Ordnance, Position
- Fuse Data from Multiple Sources and Sensors
- Shade Digital Map to Show Sensor Coverage
- Shade Digital Map to Show Threat Intervisibility
- Monitor Team Expendables
- Fill out Call For Fire Template
- Fill out Spot Reports
- Ensure Digital Reports Reach Destination
- Select Weapon
- Arm Weapon

Functions of FCS Sensors

Survivability

- Blue SA (track, locus, ID)
- Active Protection (AP)
 - Preempt hostile action
 - Locate and destroy attacker
 - Foil attack
- Engage BLOS
- COMSEC

Lethality

- Target tracking, IFF
- Collaborative engagement
 - Geo-registration
 - Optimized weapon choices
- Low-latency strike
- Post strike assessment

Mobility

- DTED on demand
- Air/ground routing and deconfliction
- Robust networking

Sustainability

- TAV
- JIT re-supply

Target Tracking and Recognition

- Is contextual: the more SA, the lower the interpretive error; hence, direct feed of processed sensor data to commander
- Improves with DTED
- Is facilitated by staring sensors and automated change-detection
- Warrants multiple platforms with redundant GMTI/SAR/IFSAR/SIGINT to maintain persistent RSTA for the FCS unit

Accuracy of Collaborating Pair of MTI

• CEP is:

- a. independent of altitude; \vdash at max range < 25 meters
- b. reduced ~ .7 by flying pairs in parallel
- c. reduced ~.5 to ~.25 as —bearings approaches 90°
- d. less if GPS/INS error is offset by benchmark DRaFT

What NetFires will provide for FCS

NetFires goals for FCS

Demonstrate two LOS/NLOS weapons prior to FY2005

- Rapid Response PAM
 - Short time of flight (100s/25km)
 - Multimode terminal guidance
 - Low cost configuration
- Hunter Killer LAM
 - 3-D ladar seeker w/ATR, TERCOM
 - Significant loiter
 - Multi-mission including BDA
- PAM/LAM
 - GPS/INS guidance
 - Variable propulsion
 - Terminal guidance (end game)
 - Midcourse update through networked 2-way data link
- Platform independent launcher
- Wireless command and control

Collaborative engagement fundamentally "reengineers close combat."

The Elements of FCS C⁴ISR

Satellites
U/A UAV - A-160
U/E UAV - TUAV
WIN-T

Connection To Global Information Grid (GIG)

Can network:

- Ground to Ground via:
 - -- SINCGARS, EPLRS
 - -- JTRS, WIN-T
 - -- HI Frequency, HI BW, ESA
 - -- BCIS IFF
- Through UAVs, ACN
- DRaFT Using Radar
- Receive only on:
 Global Broadcast System

Sensors can be comm devices, and radios can be sensors